Deep learning beyond the learning


Open Source frameworks such as TensorFlow, MXNet, or PyTorch enable anyone to model and train Deep Neural Networks. While there are many great tutorials and talks showing us the best ways for training models, there is few information on what happens after we have trained our model? How can we store, utilize, and update it? In this talk, we look at the complete Deep Learning Pipeline and looks at topics such as deployments, multi-tenancy, jupyter notebooks, model serving, and more.

Language: English

Level: Intermediate

Jörg Schad

Head of Machine Learning - ArangoDB

Jörg Schad is Head of Machine Learning at ArangoDB. In a previous life, he has worked on or built machine learning pipelines in healthcare, distributed systems at Mesosphere, and in-memory databases. He received his Ph.D. for research around distributed databases and data analytics. He’s a frequent speaker at meetups, international conferences, and lecture halls.

Go to speaker's detail